2,012 research outputs found

    Effect of the heliospheric interface on the distribution of interstellar hydrogen atom inside the heliosphere

    Full text link
    This paper deals with the modeling of the interstellar hydrogen atoms (H atoms) distribution in the heliosphere. We study influence of the heliospheric interface, that is the region of the interaction between solar wind and local interstellar medium, on the distribution of the hydrogen atoms in vicinity of the Sun. The distribution of H atoms obtained in the frame of the self-consistent kinetic-gasdynamic model of the heliospheric interface is compared with a simplified model which assumes Maxwellian distribution of H atoms at the termination shock and is called often as 'hot' model. This comparison shows that the distribution of H atoms is significantly affected by the heliospheric interface not only at large heliocentric distances, but also in vicinity of the Sun at 1-5 AU. Hence, for analysis of experimental data connected with direct or undirect measurements of the interstellar atoms one necessarily needs to take into account effects of the heliospheric interface. In this paper we propose a new model that is relatively simple but takes into account all major effects of the heliospheric interface. This model can be applied for analysis of backscattered Ly-alpha radiation data obtained on board of different spacecraft.Comment: published in Astronomy Letter

    The Beurling--Malliavin Multiplier Theorem and its analogs for the de Branges spaces

    Full text link
    Let ω\omega be a non-negative function on R\mathbb{R}. We are looking for a non-zero ff from a given space of entire functions XX satisfying (a)fωor(b)fω.(a) \quad|f|\leq \omega\text{\quad or\quad(b)}\quad |f|\asymp\omega. The classical Beurling--Malliavin Multiplier Theorem corresponds to (a)(a) and the classical Paley--Wiener space as XX. We survey recent results for the case when XX is a de Branges space \he. Numerous answers mainly depend on the behaviour of the phase function of the generating function EE.Comment: Survey, 25 page

    Singular perturbation theory for interacting fermions in two dimensions

    Full text link
    We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a non-perturbative effect: an interaction with the zero-sound mode. Resumming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T)T2C(T)\propto T^2. It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T)C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T)C(T). We also obtain a general form of the non-analytic term in C(T)C(T), valid for the case of a generic Fermi liquid, \emph{i.e.}, beyond the perturbation theory.Comment: 53 pages, 10 figure

    The Mu2e undoped CsI crystal calorimeter

    Full text link
    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not the final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.Comment: 6 pages, 8 figures, proceedings of the "Calorimetry for the high energy frontier (CHEF17)" conference, 2-6 October 2017, Lyon, Franc

    Design, status and perspective of the Mu2e crystal calorimeter

    Full text link
    The Mu2e experiment at Fermilab will search for the charged lepton flavor violating process of neutrino-less μe\mu \to e coherent conversion in the field of an aluminum nucleus. Mu2e will reach a single event sensitivity of about 2.510172.5\cdot 10^{-17} that corresponds to four orders of magnitude improvements with respect to the current best limit. The detector system consists of a straw tube tracker and a crystal calorimeter made of undoped CsI coupled with Silicon Photomultipliers. The calorimeter was designed to be operable in a harsh environment where about 10 krad/year will be delivered in the hottest region and work in presence of 1 T magnetic field. The calorimeter role is to perform μ\mu/e separation to suppress cosmic muons mimiking the signal, while providing a high level trigger and a seeding the track search in the tracker. In this paper we present the calorimeter design and the latest R&\&D results.Comment: 4 pages, conference proceeding for a presentation held at TIPP'2017. To be published on Springer Proceedings in Physic

    Quality Assurance on a custom SiPMs array for the Mu2e experiment

    Full text link
    The Mu2e experiment at Fermilab will search for the coherent μe\mu \to e conversion on aluminum atoms. The detector system consists of a straw tube tracker and a crystal calorimeter. A pre-production of 150 Silicon Photomultiplier arrays for the Mu2e calorimeter has been procured. A detailed quality assur- ance has been carried out on each SiPM for the determination of its own operation voltage, gain, dark current and PDE. The measurement of the mean-time-to-failure for a small random sample of the pro-production group has been also completed as well as the determination of the dark current increase as a function of the ioninizing and non-ioninizing dose.Comment: 4 pages, 10 figures, conference proceeding for NSS-MIC 201

    Superfluid pairing in a polarized dipolar Fermi gas

    Full text link
    We calculate the critical temperature of a superfluid phase transition in a polarized Fermi gas of dipolar particles. In this case the order parameter is anisotropic and has a nontrivial energy dependence. Cooper pairs do not have a definite value of the angular momentum and are coherent superpositions of all odd angular momenta. Our results describe prospects for achieving the superfluid transition in single-component gases of fermionic polar molecules.Comment: 12 pages, 2 figure
    corecore